FACTORIZATIONS FOR nD POLYNOMIAL MATRICES*

نویسندگان

  • Zhiping Lin
  • Jiang Qian Ying
چکیده

In this paper, a constructive general matrix factorization scheme is developed for extracting a nontrivial factor from a given nD (n > 2) polynomial matrix whose maximal order minors satisfy certain conditions. It is shown that three classes of nD polynomial matrices admit this kind of general matrix factorization. It turns out that minor prime factorization and determinantal factorization are two interesting special cases of the proposal general factorization. As a consequence, the paper provides a partial solution to an open problem of minor prime factorization as well as to a recent conjecture on minor prime factorizability for nD polynomial matrices. Three illustrative examples are worked out in detail.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

cient Parallel Factorization and Solution ofStructured and Unstructured Linear

This paper gives improved parallel methods for several exact factoriza-tions of some classes of symmetric positive deenite (SPD) matrices. Our factorizations also provide us similarly eecient algorithms for exact computation of the solution of the corresponding linear systems (which need not be SPD), and for nding rank and determinant magnitude. We assume the input matrices have entries that ar...

متن کامل

Rational and Polynomial Matrices

where λ = s or λ = z for a continuousor discrete-time realization, respectively. It is widely accepted that most numerical operations on rational or polynomial matrices are best done by manipulating the matrices of the corresponding descriptor system representations. Many operations on standard matrices (such as finding the rank, determinant, inverse or generalized inverses, nullspace) or the s...

متن کامل

Efficient parallel factorization and solution of structured and unstructured linear systems

This paper gives improved parallel methods for several exact factorizations of some classes of symmetric positive definite (SPD) matrices. Our factorizations also provide us similarly efficient algorithms for exact computation of the solution of the corresponding linear systems (which need not be SPD), and for finding rank and determinant magnitude. We assume the input matrices have entries tha...

متن کامل

Polynomial perturbations of bilinear functionals and Hessenberg matrices

This paper deals with symmetric and non-symmetric polynomial perturbations of symmetric quasi-de nite bilinear functionals. We establish a relation between the Hessenberg matrices associated with the initial and the perturbed functionals using LU and QR factorizations. Moreover we give an explicit algebraic relation between the sequences of orthogonal polynomials associated with both functionals.

متن کامل

Negativity Subscripted Fibonacci And Lucas Numbers And Their Complex Factorizations

In this paper, we …nd families of (0; 1; 1) tridiagonal matrices whose determinants and permanents equal to the negatively subscripted Fibonacci and Lucas numbers. Also we give complex factorizations of these numbers by the …rst and second kinds of Chebyshev polynomials. 1. Introduction The well-known Fibonacci sequence, fFng ; is de…ned by the recurrence relation, for n 2 Fn+1 = Fn + Fn 1 (1.1...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005